

SHENTON

EG

E

C O L L

Year 12 Mathematics: Specialist Term 2 2020

Test 2 *Calculator Free* Functions, Graphs & Vectors in 3D

Student Name:			
Teacher:	Alfonsi	Moore	
Working Time: 30 minutes Formula Sheet provided.			Total Marks
Attempt all questions. All necessary working and reasoning must be shown for full marks .			37

Question 1.

Solve the following system of linear equations using Gaussian elimination.

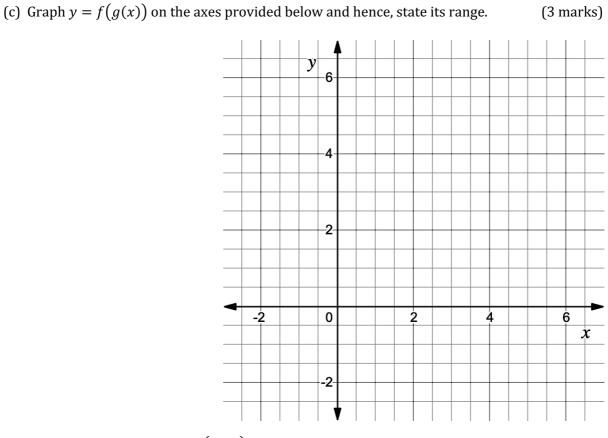
$$x - y + 2z = 4$$

$$-2x - y + 3z = -1$$

$$4x - y - z = 7$$

(4 marks)

Question 2.


(8 marks)

Two functions, *f* and *g*, are defined as:

 $f(x) = |x| + |2x + 2| \qquad \qquad g(x) = x - 3$

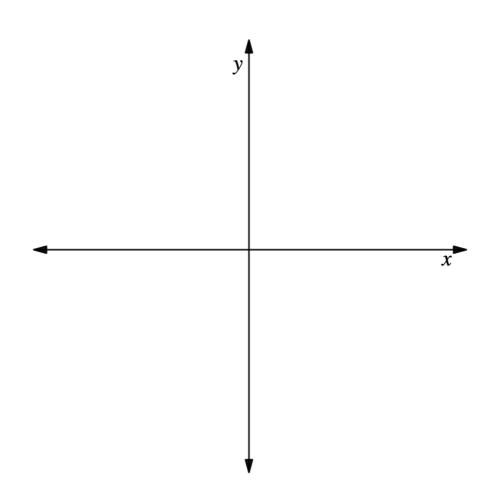
(a) State f(g(x)), simplifying where possible. (1 mark)

(b) Hence, determine the piecewise definition of f(g(x)). (3 marks)

(d) Hence, or otherwise, solve $f(g(x)) \le 2$.

Question 3.

Consider the function $f(x) = k - \frac{x}{\sqrt{x}}$. The graph of y = f(x) is shown below. -y-10 -5 10 0 5 x -5 (a) State the domain of f(x). (1 mark) (b) State the value of *k*. (1 mark) (c) Show, algebraically, that f(x) is indeed a one-to-one function. (2 marks)


(d) Sketch $y = f^{-1}(x)$ on the same axes above and hence, solve $f(x) = f^{-1}(x)$. (3 marks)

(e) State the defining rule for $y = f^{-1}(x)$, including an appropriate restriction on the domain. (3 marks)

Question 4.

Consider the rational function, $f(x) = \frac{x^3 - 2x^2 + x + 4}{x^2 - 4}$.

(a) Sketch the rational function y = f(x) on the axes provided below, labelling all critical points. *You do not need to locate the stationary points of the rational function.* (5 marks)

NOTE: For part (b), two sets of blank axes has been provided, however, there are no marks assigned to a sketch.

(b) Hence, determine the value(s) of *x* such that:

(i)
$$f(x) = |f(x)|$$
. (2 marks)
y
(ii) $f(x) = f(|x|)$. (1 mark)
y
(1 mark)

5

Question 5.

(7 marks)

A plane is defined by the vector equation $\Pi_1 : \boldsymbol{r} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -4 \\ 1 \\ 5 \end{pmatrix}.$

(a) Determine the equation of the plane in the form $\mathbf{r} \cdot \mathbf{n} = k$.

(3 marks)

(4 marks)

A second plane has a Cartesian equation defined by Π_2 : x + 2y + z = -2.

 Π_1 and Π_2 intersect along a line defined by the equation ay + bz = d, where $a, b, d \in \mathbb{Z}$.

(b) Determine a possible set of values for *a*, *b* and *d*.